Magnetic ZnFe2O4@polyhydroxybenzoic acid nanostructure for efficient B.subtilis capturing
نویسندگان
چکیده مقاله:
Objective(s): This work focuses on preparing an efficient bacterial capture system based on the magnetic polyphenolic nanostructure. For a reason, a one-step hydrothermally route was employed to prepare ZnFe2O4@hydroxybenzoic acid - resorcinol nanohybrid. Methods: The nanostructure was characterized by X–ray diffraction (XRD), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) vibration sample magnetometry (VSM) and zeta potential measurement. Bacillus subtilis was employed as a sample pathogen to evaluate bacterial capture efficiency of the nanohybrid. Results: Characterization results confirmed that the hybrid material is in nano scale. Moreover, it has a magnetic saturation of 6.7 emu g-1 which is in right level to be employed for magnetic separation. Effect of relevant variables on capturing efficiency including pH, contact time and adsorbent dosage was investigated, and optimum levels were obtained. Conclusions: It found that the capturing efficiency is independent of solution pH. Moreover, capturing experiments showed fast equilibrium time of 20 min with the effectiveness more than 99%.
منابع مشابه
Synthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application
The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...
متن کاملEfficient Timestamps for Capturing Causality
Consider an asynchronous system consisting of processes that communicate via message-passing.The processes communicate over a potentially incomplete communication network consisting of reli-able bidirectional communication channels. Thus, not every pair of processes is necessarily able tocommunicate with each other directly.The goal of the algorithms discussed in this paper ...
متن کاملsynthesis of three-layered magnetic based nanostructure for clinical application
the main objective of this research was to synthesize and characterize gold-coated fe3o4 /sio2 nanoshells for clinical applications. magnetite nanoparticles (nps) were prepared via co-precipitation. the results showed that smaller particles can be synthesized by decreasing the naoh concentration, which in our case this corresponded to 35 nm by using 0.9 m of naoh at 750 rpm. the nps were then m...
متن کاملAlkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...
متن کاملMagnetic nanoparticle immobilized N-propylsulfamic acid: The efficient, green and reusable nanocatalyst for the synthesis of substituted coumarins
N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) was investigated as an efficient and magnetically recoverable catalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with variety aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be readily recovered easily ...
متن کاملAlkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 3
صفحات 165- 170
تاریخ انتشار 2017-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023